Computer assisted part programming (APT, Automatically Programmed Tool)

- Manual part programming is time-consuming, tedious, and subject to human errors for complex jobs.

- Machining instructions are written in English-like statements that are translated by the computer into the low-level machine code of the MCU.

- It is used for more complex jobs.

- APT (Automatically Programmed Tool)
The various tasks in computer-assisted part programming are divided between;
 - The human part programmer
 - The computer.

Sequence of activities in computer-assisted part programming
Part Programmer's Job

Two main tasks of the programmer:
1- Define the part geometry
2- Specify the tool path and Operation Sequence

1- Define the part geometry

- Underlying assumption: no matter how complex the part geometry, it is composed of basic geometric elements and mathematically defined surfaces
- Geometry elements are sometimes defined only for use in specifying tool path
- Examples of part geometry definitions:
 - P4 = POINT/35, 90,0
 - L1 = LINE/P1, P2
 - C1 = CIRCLE/CENTER, P8, RADIUS, 30.0
2- Specify the tool path and Operation Sequence

- Tool path consists of a sequence of points or connected line and arc segments, using previously defined geometry elements.
 - Point-to-Point command:
 GOTO/P0
 - Continuous path command:
 GOLFT/L2, TANTO, C1

Other Functions in Computer-Assisted Part Programming

- Specifying cutting speeds and feed rates
- Designating cutter size (for tool offset calculations)
- Specifying tolerances in circular interpolation
- Naming the program
- Identifying the machine tool
Cutter Offset

Cutter path must be **offset** from actual part **outline** by a distance equal to the cutter **radius**

Computer Tasks in Computer-Assisted Part Programming

1. **Input translation** – converts the coded instructions in the part program into computer usable form
2. **Arithmetic and cutter offset computations** – performs the mathematical computations to define the part surface and generate the tool path, including cutter offset compensation (CLFILE)
3. **Editing** – provides readable data on cutter locations and machine tool operating commands (CLDATA)
4. **Postprocessing** – converts CLDATA into low-level code that can be interpreted by the MCU
There are four basic types of statements in the APT language:

1. *Geometry statements*, also called *definition statements*; are used to define the geometry elements that comprise the part.

2. *Motion commands*; are used to specify the tool path.

3. *Postprocessor statements*; control the machine tool operation, for example, to specify speeds and feeds, set tolerance values for circular interpolation, and actuate other capabilities of the machine tool.

4. *Auxiliary statements*; a group of miscellaneous statements used to name the part program, insert comments in the program and accomplish similar functions.

- APT vocabulary words consist of six or fewer characters. The characters are almost always letters of the alphabet.
Geometry statements

The points, lines, and surfaces must be defined in the program prior to specifying the motion statements. The general form of an APT geometry statement is the following:

\[
\text{SYMBOL} = \text{GEOMETRY TYPE/} \text{descriptive data}
\]

as an example;

\[
P1 = \text{POINT}/20.0, 40.0, 60.0
\]

A symbol can be any combination of six or fewer alphabetical and numerical characters, at least one of which must be alphabetical. Also the symbol cannot be an APT vocabulary word. Some examples are presented in the following Table:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Permissible or Not, and Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Permissible</td>
</tr>
<tr>
<td>PZL</td>
<td>Permissible</td>
</tr>
<tr>
<td>ABCDEF</td>
<td>Permissible</td>
</tr>
<tr>
<td>PABCDEF</td>
<td>Not permissible, too many characters</td>
</tr>
<tr>
<td>123456</td>
<td>Not permissible, all numerical characters</td>
</tr>
<tr>
<td>POINT</td>
<td>Not permissible, APT vocabulary word</td>
</tr>
<tr>
<td>P1.5</td>
<td>Not permissible, only alphabetic and numerical characters are allowed</td>
</tr>
</tbody>
</table>
Points: Specification of a point can be accomplished by the following:

1) Designating its x-, y-, and z-coordinates;

 \[P1 = \text{POINT/15.0, 10.0, 25.0} \]

2) As the intersection of two intersecting lines;

 \[P2 = \text{POINT/INTOF, L1, L2} \]

 L1 and L2 are two previously defined lines.

Lines: A line in APT is considered to be of infinite length in both directions. Specification of a line can be accomplished by the following:

1) Two points through which it passes;

 \[L1 = \text{LINE/P3, P4} \]

 P3 and P4 are two previously defined points.

2) Passes through point (P5) and parallel to another line (L3) that has been previously defined;

 \[L2 = \text{LINE/P5, PARLEL, L3} \]
Planes: In APT, a plane extends indefinitely. A plane can be defined by the following:

1) Three points through which it passes;

 \[PL1 = PLANE/P1, P2, P3 \]

 P1, P2 and P3 **must be non-collinear**.

2) Passes through point (P2) and parallel to another plane (PL1) that has been *previously defined*;

 \[PL2 = PLANE/P2, PARLEL, PL1 \]

Circles: In APT, a circle is considered to be a cylindrical surface that is perpendicular to the \(x-y \) plane and extends to infinity in the \(z \)-direction. A circle can be defined by the following:

1) Its center and radius;

 \[C1 = CIRCLE/CENTER, P1, RADIUS, 25.0 \]

2) Three points through which it passes;

 \[C2 = CIRCLE/P4, P5, P6 \]

 The three points **must not be collinear**.
Certain ground rules must be obeyed when formulating APT geometry statements. Following are four important APT rules:

1. Coordinate data must be specified in the order x, then y, then z, because the statement

 \[P1 = \text{POINT}/20.5, 40.0, 60.0 \]

 is interpreted to mean \(x = 20.5 \, \text{mm}, \, y = 40.0 \, \text{mm}, \text{and} \, z = 60.0 \, \text{mm} \).

2. Any symbols used as descriptive data must have been previously defined; for example, in the statement

 \[P2 = \text{POINT}/\text{INTOF}, \text{L1}, \text{L2} \]

 the two lines L1 and L2 must have been previously defined. In setting up the list of geometry statements, the APT programmer must be sure to define symbols before using them in subsequent statements.

3. A symbol can be used to define only one geometry element. The same symbol cannot be used to define two different elements. For example, the following statements would be incorrect if they were included in the same program:

 \[P1 = \text{POINT}/20, 40, 60 \]
 \[P1 = \text{POINT}/30, 50, 70 \]

4. Only one symbol can be used to define any given element. For example, the following two statements in the same part program would be incorrect:

 \[P1 = \text{POINT}/20, 40, 60 \]
 \[P2 = \text{POINT}/20, 40, 60 \]
Motion Commands

All APT motion statements follow a common format, just as geometry statements have their own format. The general form of an APT motion command is:

```
MOTION COMMAND/descriptive data
```

as an example;

```
GOTO/P1
```

- At the beginning of the sequence of motion statements, the tool must be given a starting point. This is likely to be the target point, the location where the operator has positioned the tool at the start of the job. The part programmer keys into this starting position with the following statement:

```
FROM/PTARG
```

Where FROM is an APT vocabulary word indicating that this is the initial point from which all others will be referenced; and PTARG is the symbol assigned to the starting point.

Another way to make this statement is the following:

```
FROM/-20.0, -20.0, 0
```

- The FROM statement occurs only at the *start* of the motion sequence.
It is appropriate to distinguish between *point-to-point* motions and *contouring* motions.

Point-to-point motions

There are two commands; GOTO and GODLTA.

* The GOTO statement instructs the tool to go to a particular point location specified in the descriptive data. Two examples are:

```
GOTO/P2
GOTO/25.0, 40.0, 0
```

* The GODLTA command specifies an *incremental* move for the tool. To illustrate, the following statement instruct the tool to move from its present position by a distance of 50 mm in x-direction, 120 mm in y-direction, and 40 mm in z-direction;

```
GODLTA/50.0, 120.0, 40.0
```

* The GODLTA statement is useful in drilling and related machining operations. The tool can be directed to go to a given hole location; then the GODLTA command can be used to drill the hole, as in the following sequence;

```
GOTO/P2
GODLTA/0, 0, -50.0
GODLTA/0, 0, 50.0
```
Contouring motions

These are more complicated than PTP commands are because the tool’s position must be continuously controlled throughout the move.

- The tool is directed along two intersecting surfaces until it reaches a third surface, as shown in the following Figure;

1. *Drive surface*; this is the surface that **guides** the side of the cutter. It is pictured as a plane in our Figure.

2. *Part surface*; this is the surface, again pictured as a plane, on which the **bottom or nose** of the tool is guided.

3. *Check surface*; this is the surface that **stops** the forward motion of the tool in the execution of the current command. One might say that this surface “checks” the advance of the tool.

Three surfaces in APT contouring motions that guide the cutting tool.
There are several ways in which the check surface can be used. This is determined by using any of four APT modifier words in the descriptive data of the motion statement. The four modifier words are TO, ON, PAST, and TANTO. As depicted in Figure (a), the word TO positions the leading edge of the tool in contact with the check surface; ON positions the center of the tool on the check surface; and PAST puts the tool beyond the check surface, so that its trailing edge is in contact with the check surface. The fourth modifier word TANTO is used when the drive surface is tangent to a circular check surface, as in Figure (c). TANTO moves the cutting tool to the point of tangency with the circular surface.
Initialization of APT contouring motion sequence: With reference to the Figure, the sequence takes the following form:

- The three surfaces included in the GO statement must be specified in the order; (1) drive surface, (2) part surface, and (3) check surface.
- Note that GO/TO is not the same as the GOTO command. GOTO is used only for PTP motions. The GO/ command is used to initialize a sequence of contouring motions and may take alternative forms such as GO/ON, GO/TO, or GO/PAST.
It is not necessary to redefine the **part surface** in every motion command after it has been **initially defined** as long as it remains the same in subsequent commands:

\[\text{GORGT/PL3, PAST, PL4} \]

* In engineering drawing, the sides of the part appear as lines, although they are three-dimensional surfaces on the physical part. In cases like this, it is more convenient for the programmer to define the part profile in terms of **lines** and **circles** rather than planes and cylinders.

* APT language system allows this because in APT, **lines are treated as planes** and **circles are treated as cylinders**, which are both perpendicular to the x-y plane.

Hence, the planes around the part outline can be **replaced by lines** (L1, L3, and L4). The commands can be replaced by the following;

\[\text{FROM/PTARG} \]
\[\text{GO/TO, L1, TO, PL2, TO, L3} \]
\[\text{GORGT/L3, PAST, L4} \]

- Plane PL2 has **not been converted** to a line. As the “part surface” in the motion statement, it must maintain its status as a plane parallel to the x- and y-axes.
Postprocessor and Auxiliary statements

Postprocessor statements control the operation of the machine tool and play a supporting role in generating the tool path. Such statements are used to define *cutter size, specify speeds and feeds, turn coolant flow on and off, and control other features of the m/c tool*. The general form of the postprocessor statement is:

POSTPROCESSOR COMMAND/descriptive data

In some commands, the descriptive data is omitted. Some examples of the postprocessor statements are the following:

- **UNITS/MM**: indicates that the specified units used in the program are INCHES or MM.
- **INTOL/0.02**: specifies inward tolerance for circular interpolation.
- **OUTTOL/0.02**: specifies outward tolerance for circular interpolation.
- **CUTTER/20.0**: defines cutter diameter for tool path offset calculations; the length and other dimensions of the tool can also be specified, if necessary, for three-dimensional machining.
- **SPINDL/1000, CLW**: specifies spindle rotation speed in revolutions per minute. Either CLW (clockwise) or CCLW (counterclockwise) can be specified.
Auxiliary statements are used to identify the part program, specify which postprocessor to use, insert remarks into the program, and so on. Some examples are following:

- **PARTNO** is the first statement in an APT program, used to identify the program: for example,

 PARTNO SAMPLE PART NUMBER ONE

- **MACHIN** permits the part programmer to specify the postprocessor, which in effect specifies the machine tool.
- **CLPRNT** stands for “cutter location print,” which is used to print out the cutter location sequence.
- **REMARK** is used to insert explanatory comments into the program that are not interpreted or processed by the APT processor.
- **FINI** indicates the end of an APT program.
Another APT statements are found in the Appendix (ref. Groover, p. 196 – 209).

Write the APT program to:

Drill the shown holes (Example 1).
Mill the shown shape (Example 2).

Solution of Example 1:

The drill will be operated at a feed of 0.05 mm/rev and a spindle speed of 1000 rev/min (corresponding to a surface speed of about 0.37 m/sec, which is slow for the aluminum work material). At the beginning of the job, the drill point will be positioned at a target point located at \(x = 0, \ y = -50, \) and \(z = +10 \) (axis units are millimeters). The program begins with the tool positioned at this target point.
PARTNO SAMPLE PART DRILLING OPERATION
MACHIN/DRILL,01
CLPRNT
UNITS/MM
REMARK Part geometry, Points are defined 10 mm above part surface.
PTARG = POINT/0, -50.0, 10.0
P5 = POINT/70.0, 30.0, 10.0
P6 = POINT/120.0, 30.0, 10.0
P7 = POINT/70.0, 60.0, 10.0
REMARK Drill bit motion statements.
FROM/PTARG
RAPID
GOTO/P5
SPINDL/1000, CLW
FEEDRAT/0.05, IPR
GODLTA/0, 0, -25.0
GODLTA/0, 0, 25.0
RAPID
GOTO/P6
SPINDL/1000, CLW
FEEDRAT/0.05, IPR
GODLTA/0, 0, -25.0
GODLTA/0, 0, 25.0
RAPID
GOTO/P7
SPINDL/1000, CLW
FEEDRAT/0.05, IPR
GODLTA/0, 0, -25.0
GODLTA/0, 0, 25.0
RAPID
GOTO/PTARG
SPINDL/OFF
FINI
Solution of Example 2:

Cutter diameter data has been manually entered into offset register 05. At the beginning of the job, the cutter will be positioned so that its center tip is at a target point located at \(x = 0, y = -50, \) and \(z = +10 \). The program begins with the tool positioned at this location.

Feed = 50 mm/min., Speed = 1000 rev/min., Cutter diam. = 20 mm.

PARTNO SAMPLE PART MILLING OPERATION
MACHIN/MILLING,02
CLPRNT
UNITS/MM
CUTTER/20.0
REMARK Part geometry, Points and Lines are defined 25 mm below part top surface.
PTARG = POINT/0, -50.0, 10.0
P1 = POINT/0, 0, -25.0
P2 = POINT/160.0, 0, -25.0
P3 = POINT/160.0, 60.0, -25.0
P4 = POINT/35.0, 90.0, -25.0
P8 = POINT/130.0, 60.0, -25.0
L1 = LINE/P1, P2
L2 = LINE/P2, P3
C1 = CIRCLE/CENTER, P8, RADIUS, 30.0
L3 = LINE/P4, LEFT, TANTO, C1
L4 = LINE/P4, P1
PL1 = PLANE/P1, P2, P4
REMARK Milling cutter motion statements.
FROM/PTARG
SPINDL/1000, CLW
FEEDRAT/50, IPM
GO/TO, L1, TO, PL1, ON, L4
GORGT/L1, PAST, L2
GOLFT/L2, TANTO, C1
GOFWD/C1, PAST, L3
GOFWD/L3, PAST, L4
GOLFT/L4, PAST, L1
RAPID
GOTO/PTARG
SPINDL/OFF
FINI